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A theoretical description is given of pressure-driven viscous flow of an initially hot 
fluid through a planar channel with cold walls. The viscosity of the fluid is assumed 
to be a function only of its temperature. If the viscosity variations caused by the 
cooling of the fluid are sufficiently large then the relationship between the pressure 
drop and the flow rate is non-monotonic and there can be more than one steady flow 
for a given pressure drop. The linear stability of steady flows to two-dimensional 
and three-dimensional disturbances is calculated. The region of instability to two- 
dimensional disturbances corresponds exactly to those flows in which an increase in 
flow rate leads to a decrease in pressure drop. At higher viscosity contrasts some 
flows are most unstable to three-dimensional (fingering) instabilities analogous, but 
not identical, to Saffman-Taylor fingering. A cross-channel-averaged model is derived 
and used to investigate the finite-amplitude evolution. 

1. Introduction 
The viscosity of most fluids increases on cooling. Large changes in the viscosity of 

fluids occur in industrial processes such as injection moulding and glass manufacture 
and in geological situations such as volcanic eruptions and lava flows. When hot 
molten rock flows into a much cooler environment, the resultant cooling causes 
polymerization of silicates within the magma and leads to a dramatic increase in the 
viscosity. Rheological variations in the flow, from a hot interior to a cooled exterior, 
or from source to distal regions, lead to a number of important phenomena. These 
range from local instabilities such as the formation of pahoehoe toes at the front of 
lava flows where hot fluid pushes through a chilled viscous skin, to global effects on 
the flow such as channelization by the formation of solidified levees at the sides of 
the flow or ‘buckling’ of the flows (which would be catastrophic in the manufacture 
of glass). The rheological variation will also control the rate at which lava flows 
propagate and the total distance that they flow before solidification. This is clearly of 
interest to populations living in the vicinity of regions where volcanic activity occurs. 

A number of non-explosive basaltic eruptions have been observed in Hawaii 
(Richter et al. 1970) and Iceland (Bjornsson et aE. 1979). Hot magma is stored in 
large chambers just a few kilometres below the surface of the Earth. Typically the 
eruptions begin with the rapid opening of fissures whose linear extent is much greater 
than their width. The magma flows from the chamber through the fissures toward 
the surface driven by the high pressures typical in magma chambers. On reaching the 
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surface the flow can fountain up to heights of tens of metres forming a ‘curtain of fire’. 
After a few hours the flow rate is observed to decrease. In some cases the flow rate 
is also observed to vary along the length of the fissure and after a further few hours 
solidification transforms the fissure into a number of small isolated surface vents. It 
is thought that the evolution and focusing of the flow is due to the interaction of the 
flow and the rheological variation in the magma on cooling (Bruce & Huppert 1990). 

Motivated by these observations, we analyse a simple model that provides a 
theoretical description of channel flows in which a large increase occurs in the 
viscosity. We model a fissure by a rectangular conduit and model the cooling effect 
of the surrounding rock by prescribing a constant temperature on the walls of the 
conduit. The flow is considered to be driven by a constant pressure drop over the 
length of the conduit, which is a more appropriate boundary condition than that of 
constant mass flux for geological situations and for all but the very early stages of 
injection moulding. We suppose that the fluid is Newtonian, but with a viscosity that 
is a given function of temperature. 

Despite the relevance of problems involving large viscosity variations to industrial 
and geological processes, there have been surprisingly few previous studies. Ockendon 
& Ockendon (1977) considered two-dimensional steady flows driven by a constant 
mass flux through a rectangular conduit whose walls are maintained at a constant 
temperature. Effects of mechanical inertia were neglected and the lubrication approxi- 
mation made to the momentum and temperature equations. Under these assumptions, 
Ockendon & Ockendon determined the asymptotic structure of the velocity and tem- 
perature fields for the particular cases of algebraic and exponential relationships 
between viscosity and temperature at asymptotically large viscosity variation. 

Richardson (1986) extended the work of Ockendon & Ockendon (1977) to include 
some of the effects of solidification. He employed a viscosity model which depended 
exponentially on the temperature and as a power law of the local shear rate, and 
also examined the case of asymptotically large viscosity contrasts for steady two- 
dimensional flows. By considering only high flow rates, he showed that an increase in 
the flow rate can lead to a decrease in the pressure drop, but did not investigate this 
phenomenon in detail. 

Whitehead & Helfrich (1991) considered a conduit fed by an elastic chamber and a 
viscosity which depends linearly on the temperature. By considering a much simplified 
one-dimensional model in which the cross-flow structure is represented heuristically 
by an average, they produced a plausible description of the system for all flow rates. 
They predicted that for sufficiently large viscosity contrasts certain pressure drops 
can be attained by three different steady flow rates. They introduced the effects of 
mechanical inertia rather than thermal inertia, which is inappropriate for the large 
Prandtl numbers characteristic of geological flows, in order to consider the stability 
of the steady flows to variations in the along-fissure direction. However, the results of 
the stability calculation were inconclusive since the largest growth rates occurred for 
largc wavenumbers. They recognized that an improved model incorporating lateral 
flow in the conduit would be necessary to determine the stability characteristics of 
the basic steady flow to along-conduit variations. 

Bruce & Huppert (1990) considered the effects of solidification and melting in a 
conduit with flow driven by a constant pressure drop. The fluid in their analysis 
was assumed to be of constant viscosity, but the width of the channel varied due to 
the solidification and melting thus varying the flow resistance in the conduit. Their 
analysis showed that if the initial width was greater than some critical value then the 
walls of the conduit would eventually melt away but if the initial width was less than 
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the critical value then solidification would eventually block the conduit. Owing to the 
thermal boundary conditions imposed by embedding the conduit in an infinite solid, 
the calculation was necessarily time-dependent, which precluded a formal stability 
calculation around a steady basic state. However, by using simple physical reasoning 
they proposed a mechanism that might lead to instability and along-fissure flow 
localization. 

While these studies have suggested the possibility of instabilities and interesting 
nonlinear dynamics, the suggestions have previously been unconfirmed by quantitative 
analysis. The objective of the present work is to calculate the steady states for flow 
in a rectangular conduit with temperature-dependent viscosity and to subject these 
states to a formal stability analysis. (In the preceding paper in this volume Helfrich 
(1995) presents an approximate analysis based on cross-channel averages of this 
problem.) In 92 the equations governing heat and mass transport within a rectangular 
conduit are derived under geologically relevant assumptions. The system can be 
described by two dimensionless parameters. The first represents the magnitude of the 
variation in viscosity and the second is a measure of the speed of the flow through 
the conduit, which can also be thought of as being a measure of the pressure drop. 
In $3 a particularly efficient numerical method is formulated to obtain steady two- 
dimensional solutions for a range of flow rates. It is shown that for sufficiently large 
viscosity variations the relationship between pressure drop and flow rate becomes 
non-monotonic so that there can be three different steady states for a given pressure 
drop. A physical explanation for this phenomenon is provided, along with a discussion 
of the effect of the form of the viscosity-temperature relationship. 

The linear stability of the two-dimensional steady states to three-dimensional 
disturbances is considered in 94. With conventional techniques this stability problem 
would represent a computationally expensive task. However, an idea similar to that 
used to solve for the basic state can be used to derive another efficient numerical 
method for the stability problem. The results show that flows which are stable to two- 
dimensional disturbances can become destabilized by three-dimensional perturbations. 
A physical explanation which draws an analogy with the Saffman-Taylor (1958) 
instability is provided. 

The instability of some two-dimensional states raises the question of what they 
evolve to. This question motivates 995 and 6 in which we examine the possibility 
of three-dimensional (flow-focused) steady states. Section 5 contains the proof of a 
surprising result which demonstrates a close correspondence between the structure 
of three-dimensional and two-dimensional steady states. In 96 we make use of this 
result to produce a numerical method which is then utilized to seek three-dimensional 
steady states. The results are discussed and compared with previous results in $7, The 
applications to geology are also explored. 

2. Problem formulation 
Consider a fluid of constant density p and thermal diffusivity K flowing through 

a rectilinear channel of width 2 4  length L and infinite lateral extent (figure 1). We 
define coordinates in which z = 0 and z = L correspond to the fluid entrance and 
exit of the channel respectively, the walls of‘ the channel are located at y = +d 
and the x-direction is perpendicular to the y- and z-directions. The origin of the 
x-coordinate is arbitrary due to the infinite lateral extent of the channel in that 
direction. We introduce, for convenience, the terminology ‘along-channel’ for the 
z-direction, ‘cross-channel’ for the y-direction and ‘transverse’ for the x-direction. 
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FIGURE 1. Definition sketch. A fluid of constant density and thermal diffusivity is driven by a 
constant pressure drop through a rectilinear channel of length L, width 2d and infinite extent in the 
x-direction. The temperature of the input fluid is Th and that of the channel walls is maintained at 
T,;  the viscosity p of the fluid varies with its temperature. 

Let the channel walls be maintained at a constant temperature T, and the input 
temperature of the fluid at temperature T h ,  where Th > T,. Let the flow be driven 
by a constant pressure drop AP over the length of the channel. We suppose that 
the variation of the fluid viscosity with temperature is given by p ( T )  and take the 
viscosity at the input temperature, p h  = p( Th), as the reference value in dimensional 
scalings. 

Parameter values for basaltic eruptions vary widely, but typical order-of-magnitude 
estimates are d - 0.3m, L - lOkm, p - 3000kgm-3, IC - m2s-l, Th-T, - 100K, 
A P / L  - lO3Pam-', pJ, N lOOPas and thermal conductivity k - 3WK-'m-' (e.g. 
Bruce & Huppert 1990). These estimates suggest that 

is sufficiently small that the flow is laminar and that 

d 
L 

R e -  - 3 x 10-4<1, 

and 

(2.24 

(2.2b) d 
- - 3 x 10-~<1, 
L 

- 3 x 105+1, 
APd3 

Pe = ~ 

KphL 
(2.2c) 

(2.24 

The effects of mechanical inertia can be neglected because of (2.2~). Along-channel 
and transverse diffusion of momentum and heat can be neglected owing to (2.2b). 
Along-stream diffusion of heat is negligible compared to advection of heat owing to 
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(2 .2~) .  The thermal entry length is much longer than the mechanical entry length 
because of (2.2d) and so Poiseuille flow at the input can be assumed. As in previous 
studies (e.g. Bruce & Huppert 1990; Whitehead & Helfrich 1991)' though the 
Brinkman number is not particularly small (AP2d4/phL2k(Th - T,) - 0.3), we also 
neglect the effects of viscous heating for simplicity. In geological applications these 
effects will be offset by cooling due to adiabatic decompression, which we also neglect. 

We define dimensionless variables by 

A d  d2 
0 = v- ,  

lc lcL (a,*) = -((u,w), 

where (u, 0, w) denotes the fluid velocity. It proves convenient in later sections to 
denote the velocity and gradient in the plane of the channel by u = (u,O,w) and 
V = (ax, 0, a,) respectively. 

As a result of the conditions (2.1) and (2.2), and using the non-dimensionalization 
defined by (2.3), conservation of heat is represented by 

aT 
~ + u * V T  +vT, = T,,,, , 
at (2.4) 

where here and in the rest of the paper we have dropped the hats on the dimensionless 
variables. The momentum equation reduces to the lubrication approximation 

( P ( m , ) , ,  = VP, ( 2 . 5 ~ )  
0 = py .  (2.5b) 

Conservation of mass is given by 

v * u + v ,  =o.  
The appropriate boundary conditions are those of fixed temperature and zero velocity 
at the channel walls, fixed temperature and pressure at the entrance, and a downstream 
condition of fixed pressure at the channel exit. In a time-dependent problem these 
conditions must be supplemented by suitable initial conditions. Using symmetry of 
the flow around y = 0, these dimensionless boundary conditions can be written 

T = O  and u = v = w = O  on y = l ,  ( 2 . 7 ~ )  
T ,=u,=v=w, ,=O on y = O ,  (2.7b) 
T = l  and p = O  on z = O ,  ( 2 . 7 ~ )  

p=-n on z = 1 ,  (2.7d) 

where 

The parameter I7 can be thought of as a dimensionless pressure drop. Alternatively 
171/2 can be thought of either as the ratio of the thermal relaxation length to the 
length of the channel, or as the ratio of along-channel advection of heat to cross- 
channel diffusion of heat. Thus li'+ 1 corresponds to the limit in which the pressure 
difference drives the fluid through the channel so rapidly that cooling only occurs in 
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thin boundary layers near the walls and 17al corresponds to the limit in which the 
fluid is cooled very soon after entering the channel and leaves the channel at very 
close to the temperature of the wall. 

In general, the relationship between viscosity and temperature will depend on the 
fluid in question and must be determined empirically. The viscosities of magmas 
vary by roughly an order-of-magnitude over 100 K with an even greater rate of 
variation over temperatures close to the liquidus (Ryan & Blevins 1987). The form 
of the variation varies from magma to magma, according to composition, volatile 
content, etc., and would require a number of parameters to describe. For simplicity, 
we consider the one-parameter functional form 

(2.9~) 

which gives good experimental agreement, often over quite large temperature varia- 
tions, for a wide range of fluids including lubricating oils, glycerol and most viscous 
syrups. We also consider the simple relationship in which viscosity is a step function 
of temperature, 

if T < 8, (2.9b) 

where 8 is a constant, which also captures the basic property that flow resistance 
should increase with decreasing temperature and has the obvious advantage of 
easing the analysis. We will perform the theoretical analysis for a general relationship 
between viscosity and temperature and illustrate the results by using the two examples 
of (2.9). It is not expected that the qualitative behaviour will depend on the detailed 
form of this relationship. Irrespective of the form of p( T ) ,  the dimensionless parameter 

(2.10) 

is implicitly introduced, which we will use to describe the strength of the variation in 
the viscosity. 

3. Steady two-dimensional flows 
Steady two-dimensional solutions clearly exist for the case of an isoviscous fluid 

( B  = 1) and physical considerations suggest that they will persist for fi > 1. Hence 
we consider (2.4)-(2.7) with 8, = & = u = 0. 

Given the velocity, the equations for the temperature are parabolic in the direction 
of flow; whereas, given the temperature, the equations for the velocity are elliptic 
in the sense that the pressure must satisfy boundary conditions at both the channel 
entrance and exit, thus making solution a non-trivial matter. However, we observe 
that the flow rate in a steady two-dimensional solution is constant along the channel 
so that, given an input flow rate, the remnant system (2.4)-(2.7c) is parabolic and 
can simply be integrated downstream. With this in mind, we consider (2.4)-(2.7c), 
and replace the downstream boundary condition p = -I7 at z = 1 by the condition 
pz = -1 at z = 0, which is equivalent to specifying a particular input flow rate. We 
denote the variables in this system by tildes and integrate forward in 2 to yield a 
pressure distribution p(2) .  

We now have a solution which satisfies all the boundary conditions except the 
downstream pressure condition. It is easy to see that increasing the input flow rate is 
equivalent to decreasing the length of the channel and so we consider the following 
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rescaling. For any given value of 2, say 21, adoption of the rescaling 

p = p p ; ,  z = 2/21, w = fi/z1, (3.1) 

with the other variables left unscaled, yields solutions p ,  w, and T which satisfy 
the two-dimensional steady-state equations with downstream boundary condition 
p = p(Zl)/Z? at z = 1, which is equivalent to setting l7 = -p(Zl)/Zf. The dimensionless 
flow rate, Q, is given by 

It follows that the elliptic system (prescribed pressure drop) can be solved for an 
array of pressure drops by solving the parabolic system (prescribed flux) just once and 
then making a number of trivial rescalings. For the purposes of numerical solution 
this transformation lessens the workload considerably. 

3.1. Numerical scheme 
In order to solve the prescribed-flux problem numerically, we introduce a stream 
function tp, defined by w = y y ,  v - --yz and y = 0 at y = 0. By integrating (2.5a) 
across the channel and applying symmetry at the centreline, we obtain 

(3.3~)  

with boundary conditions 

w = 1 and w y  = 0 at y = 1 

w = 0 at y = 0. 

(3.3b) 

(3.3c) 
Given p ( T )  at a particular value of z ,  we can find the velocity profile by using the 
second-order midpoint rule to integrate (3.3~) from y = 1 subject to (3.3b) and then 
by using (3.3~) to determine p z .  Given the velocity field, we can solve the temperature 
equation (2.4) by using a finite-difference scheme that is second order in both y and 
z .  These solutions, for the velocity given p ( T )  and for T given the velocity, form 
the basis of an iterative scheme for making a step in the along-channel direction; we 
use the velocity profile at the previous upstream location as an initial guess for the 
velocity profile at the current location, solve (2.4) for the temperature distribution at 
the current location and then (3.3) for a better estimate of the velocity profile. A 
few iterations of (2.4) and (3.3) produces a convergent solution and then the next 
along-channel step is made. 

For the case in which the viscosity is the step function of temperature defined by 
(2.9b) a slightly different approach is adopted. The system (2A42.7)  can be written 
as a nonlinear free-boundary problem (or a moving-boundary problem when the 
system is transformed to its parabolic form) in which the free boundary is given by 
the isotherm T = 8. The appropriate conditions to be applied across the isotherm are 
those of continuous temperature, temperature gradient, velocity and stress. We denote 
the position of the isotherm T = 8 by Y ( z )  and map the regions 0 < y < Y ( z )  and 
Y ( z )  < y < 1 onto fixed domains by appropriate boundary-fixing transformations. 
Given the position of the isotherm Y ( z ) ,  the velocity profile and pressure gradient 
can be found analytically (see Appendix A) and the temperature equation (2.4) solved 
numerically in each domain subject to T = 8 at y = Y ( z ) .  The position of Y ( z )  

and 
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is determined by the condition that the solutions for T in the two domains have 
the same gradient at y = Y ( z ) .  Hence by treating the difference in the temperature 
gradients as a function of Y,  we can use Brent's method of root finding (Press et al. 
1992) to ensure that this difference is zero at each along-channel step. 

Since hot fluid instantaneously comes into contact with the cold wall at the input, 
the solution is singular there. Consideration of the local behaviour shows that a 
thermal boundary layer is produced next to the wall, which initially is unaffected by 
the finite width of the channel. This absence of a lengthscale gives rise to a similarity 
solution, which is given by 

where 

from (3.3~)  and (2.4) respectively. The boundary conditions are 

df 
drl 

f (0) = -(o) = g(0) = 0 and g(co) = 1. 

(3.5a, b)  

(3.5c) 

This can readily be solved numerically by use of a shooting technique. The solution 
is shown in figure 2 for the exponential viscosity model and is given in Appendix 
A for the step-function model. The similarity solution can be used as an 'initial' 
condition for the numerical solution of (2.4)-(2.7), thus bypassing the problem of 
the singular input conditions. The self-similar nature of the solution near the input 
requires the use of a variable step length and a grid that takes into account the fact 
that the majority of the temperature adjustment initially occurs close to the wall. The 
similarity solution also provides a valuable check on the accuracy of the numerical 
method. 

3.2. Results 

The results for both the exponential and the step-function viscosity models show that 
for sufficiently small fl the flow rate is uniquely determined by the pressure drop. 
However, when #I exceeds a critical value, #Ic, which depends on the viscosity model, 
the relationship between pressure drop and flow rate becomes non-monotonic so that 
there are values of the pressure drop for which the flow rate is no longer uniquely 
determined (figure 3). In these cases there are three possible flow rates for a given 
pressure drop. The boundary in (T;I,#I)-space between the region where there is a 
unique solution and the region where there are three solutions for a given pressure 
drop forms a cusp (figure 4). When #I > #Ic and the curve relating pressure drop and 
flow rate is non-monotonic we refer to the portion of the curve between the two local 
extrema as the central branch, the part of the curve to the right of the local minimum 
as the fast branch and the part of the curve to the left of the local maximum as the 
slow branch. The central branch has the property that the pressure drop decreases 
with increasing flow rate. 

The existence of multiple solutions for a given pressure drop can be understood 
physically by recalling that the pressure drop over the channel length is due to the 
integrated product of the viscosity and the shear rate and realizing that an increase 
in flow rate gives rise to two competing effects. Firstly, there is the effect experienced 
by isoviscous fluids, that increasing the flow rate increases the shear rate, which tends 



Effects of t~nperatur~-dep~ndent  viscosity on $ow in a cooled channel 247 

g 
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4 
FIGURE 2. The near-entry simihrity solutions for the stream function and temperature distribution, 
as given by (3.4) and (3.5) as functions f and g of the similarity variable 4 = (1 - Y)/x ' /~ .  The 
exponential viscosity model ( 2 . 9 ~ )  is used with viscosity ratio B = 10. 

0 2 4 6 8 10 

Flow rate, Q 
FIGURE 3. The relationship between pressure drop and flow rate for various values of the viscosity 

ratio p. The viscosity model used is the step-function (2.9b) with the step at 0 = 1/2. 

to give rise to a larger viscous pressure drop. Secondly, an increase in the Aow rate 
decreases the time available for cooling, and thus increases the exit temperature of 
the fluid and decreases the average viscosity in the channel, which tends to decrease 
the viscous pressure drop. If the second effect becomes greater than the first then 
triple-valued solutions will result. 

From the above argument it is clear that the functional form of the relationship 
between viscosity and temperature can have a significant effect on the value of the 
critical viscosity ratio pc. As we have seen, a triple-valued solution occurs when the 
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Three solutions 

I , ,  I I I , , , , I I  I , ,  I , ,  I ,  

0 50 100 150 

Pressure drop, 17 
FIGURE 4. The (n, /3) plane is divided into regions where there is a unique solution 

and regions where there are three distinct solutions. 

0 0.2 0.4 0.6 0.8 1.0 

Step temperature, 8 
RGURE 5. The critical viscosity ratio for the step-function viscosity model as a function 

of the temperature at which the step occurs. 

average viscosity in the channel decreases sufficiently rapidly with increasing flow 
rate. Hence, a more abrupt variation of viscosity with temperature will, in general, 
lead to a lower value of the critical viscosity ratio. For example, the critical viscosity 
ratio for the exponential model is approximately 190, whereas the critical value for 
the step-function model with 6 = 1/2 is approximately 12. 

For the step-function viscosity model, the temperature 8 at which the change in 
viscosity occurs also has an effect on the critical viscosity ratio. As shown in figure 5, 
the critical value decreases as 8 approaches the temperature of the wall. This can 
be understood by dividing the channel in the along-channel direction into three 
qualitative regions: an input region where the viscosity is ,u( T h )  everywhere except 
for the thin boundary layers near the wall; a viscous region where the viscosity is 
p(TJ everywhere since the temperature has fallen below T = 6 across the whole 
channel; and a changeover region in which the cross-channel average of the viscosity 
is significantly different from both initial and final values of the viscosity. Clearly, 
as 6 decreases, the ratio of the length of the input region to that of the changeover 
region increases. Thus the lower the value of 8 the more abrupt the viscosity change 
appears, which leads to a lower value of the critical viscosity ratio. 

As 0 + 0 the ratio of the input length to the changeover length is O(l In 81). With 
a suitable choice of lengthscale, the cross-channel averaged viscosity in this limit 
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takes the value 1 in the input region z < Q and p in the viscous region z > Q, and 
the changeover region can be neglected. This represents the most abrupt change in 
viscosity that is possible. A simple calculation shows that this will give a triple-valued 
solution if p > 2, which corresponds to the theoretical minimum value of pc. This 
result is in agreement with the numerical results for 0 + 0. 

4. Linear stability of two-dimensional steady flows 
We wish to investigate the linear stability of the basic two-dimensional steady states 

for different values of the parameters I7 and p. Having obtained the basic state, which 
we now denote by a subscript zero, we introduce perturbations by writing 

(4.1~)  
(4.lb) 
(4 .1~)  
(4.ld) 

where 0 is the growth rate of the disturbance and k is the wavenumber of the 
disturbance in the x-direction. Since p’ is independent of y and is thus symmetric in 
y, only symmetric perturbations to the velocity and temperature fields are coupled 
to p’. We expect the dynamical feedback giving rise to an instability to involve the 
pressure field via the effect of temperature on flow resistance and thus we concentrate 
on symmetric eigenmodes. 

U t f i k X  

at+lkx 
4 Y ,  z) = UO(4’, z) + U ‘ b ,  z)e 
4 v ,  z) = vo(y, z) + 4 Y ,  z)e 

T(y,z) = TO(Y,Z) + T’(y,z)e 

, 
, 

ot+ikx 
3 

p ( z )  = p o ( z )  + p’(z)eU’+lkX, 

The linear stability problem then takes the form 

p( To)ub + UO,: $ 1  T’ = ikyp’, 
To 

(4.2a) 

(4.2b) 

iku‘ + vi, + w: = 0, 

QT’ + v‘TOy + w’TO, + UOT; + WOT,’ = Tiy . 
(4.2~) 

(4.2d) 

The appropriate symmetric boundary conditions are 

T’ = 0 and u’ = v’ = w’ = 0 at y = 1, 
Tj = 0 and 0’ = 0 at y = 0, 

p’ = 0 and T’ = 0 at z = 0, 
p’ = 0 at z = 1. 

When the step-function viscosity model is employed the approach is, once again, 
slightly modified. In addition to (4.1), we perturb the position of the isotherm T = 8 
by writing 

(4.le) 
and again linearize to obtain the same system as (4.2) but with the terms involving 
dp/dT omitted. The conditions to be applied across the interface are 

(4.3a,b,c) 

[Ti] =o,  [T’] =o,  (4.3d,e) 

otfikx Y (z) = Y , ( z )  + Y’(z)e 

[u’] + Y’ [uoy] = 0 [v’] + Y’ [uoY] = o [pub] = o 
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where square brackets denote the jump in the enclosed quantity across the isotherm 

If we consider modes that are two-dimensional and neutrally stable (i.e. k = 0 
and CT = 0) then the eigenfunctions take a particularly simple form. In this case the 
disturbance equations and the two-dimensional basic-state equations have essentially 
the same form and so the eigenfunctions for the linear stability problem result from 
an infinitesimal change in the input flow rate. We thus need a two-dimensional steady 
state which possesses the property that an infinitesimal increase in flow rate leaves the 
pressure drop unchanged. It follows that the states that are neutrally stable to two- 
dimensional perturbations correspond exactly with states at the local maximum and 
minimum of the curve relating pressure drop and flow rate. Physical considerations 
suggest that the central branch of this curve, in which the pressure drop decreases 
with increasing flow rate, corresponds to flows that are unstable to two-dimensional 
perturbations, while the slow and fast branches correspond to flows that are stable to 
two-dimensional perturbations. 

T = 0. 

4.1. Numerical scheme 
We wish to solve the eigenvalue problem (4.2) for a range of values of 17. The standard 
method for solving such a system would be to seek cr(n,k) by first fixing 17 and k 
and then solving for CT using finite-difference, finite-element or shooting methods. The 
process would then be repeated for each value of 17 and k .  Both finite-difference and 
finite-element methods would require inversion of very large matrices, and shooting, 
although clearly possible, requires the solution of a nonlinear complex equation. 

Exploratory application of a shooting method suggested that there is one real 
eigenvalue with the rest of the spectrum made up of complex eigenvalues, and that 
the real eigenvalue always represents the most dangerous mode. Since the required 
eigenvalue is real, an alternative and much more efficient numerical method is possible. 

Recall that the efficiency of the method used to determine the two-dimensional 
steady state was essentially due to the fact that the single downstream boundary 
condition at z = 1 could be satisfied by rescaling a solution that satisfied p z  = -1 at 
z = 0. With similar motivation, rather than solving for cr(17,k) we solve for L ! ( C T , ~ )  
by fixing B and k and considering the system (4.2) with the boundary condition p' = 0 
at z = 1 replaced by p i  = -1 at z = 0. As in $3 we denote the variables in this system 
with tildes. We then integrate numerically until a' = 0 at some value of 2, say 21. Then 
cr is an eigenvalue for the system when Q = 2/3fl. This process must be repeated for 
a range of B values, but nonlinear equation solving and large matrix operations have 
been avoided. The method for along-channel integration was similar to the method 
used to obtain the basic state and again takes into account the self-similar nature of 
the solution close to the channel entrance. 

4.2. Results 
We use the step-function viscosity model and begin by considering the stability to 
two-dimensional disturbances ( k  = 0). It is found that when f i  < p c  and there is only 
one steady state, then it is stable. When f i  > /Ic and there are three steady states then, 
as predicted above, the slow and fast branches are stable and the central branch is 
unstable with the change of stability located at the local maximum and minimum. 

We now turn our attention to the effect of three-dimensional disturbances ( k  # 0). 
Since the basic states cannot be uniquely determined by the value of 17 when p > pc ,  
we label the basic state by the flow rate Q. While this now gives a unique identification 
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FIGURE 6.  The dispersion relationship o(k*) for various values of the flow rate: (a) viscosity ratio 
fl  = 20, which is between flc and f13d; ( h )  fl  = 30 which is greater than P3d.  The step-function 
viscosity model is used with the step at 0 = 1/2. 

of the basic state, it should be stressed that the boundary conditions are those of 
fixed pressure drop and not those of fixed flow rate. 

We expect that interesting phenomena will occur when the wavelength of the 
disturbance is comparable to the thermal entry length. With this in mind we introduce 
a modified wavenumber 

k* = k / Q ,  (4.4) 
which is scaled on a thermal entry lengthscale O(wd2/ic) rather than the length of the 
channel. We note that wd2/rc%=d so that diffusion of temperature in the (x,z)-plane 
remains negligible. 

For different values of Q and p the dispersion relation, c = a@"), can be charac- 
terized as being in one of two distinct regimes. Firstly, for sufficiently high flow rates 
the growth rate decreases monotonically with increasing k* (figure 6a). Hence the 
value of k* for which the largest growth rate occurs, which we define as k;,,(Q,fl), 
is zero. This implies that in this parameter range the most unstable or the least 
stable mode is the one associated with two-dimensional disturbances. Secondly, at 
the lower flow rates the growth rate increases with k* until it reaches a maximum at 
kb,,(Q, b)  # 0 and beyond that point decreases monotonically (figure 6b). We denote 
the boundary separating these two regimes by Q3d(P). If we examine the behaviour 
close to the boundary we see that the transition is continuous in the sense that 
the three-dimensional disturbances develop continuously from the two-dimensional 
disturbances, since if we start in the second regime and move toward the boundary 
the value of kk,,(Q,p) tends uniformly to zero. 

When considering three-dimensional stability, a steady state is linearly stable if it is 
stable to disturbances of all wavenumbers. For values of p below and slightly above pc  
the addition of three-dimensional modes does not affect the bifurcation structure since 
a solution that is stable to two-dimensional disturbances is also stable to all three- 
dimensional disturbances. A change occurs when the curve Q = Q 3 d ( f i )  crosses the 
two-dimensional neutral-stability curve at a value of p which we denote by P 3 d .  When 
f l  > & there are now basic states which are stable to two-dimensional disturbances 
but are unstable to a finite band of wavenumbers with k' # 0. This extends the 
region of instability from the two-dimensional result, modifying the neutral-stability 
boundary as seen in figure 7 .  Contours of the growth rate in (k*,Q)-space are shown 
in figure 8 for p < & and p > p 3 d .  
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FIGURE 7. The inclusion of three-dimensional perturbations modifies the neutral-stability curve 
from the two-dimensional results. The solid curve NS(2d) is the two-dimensional neutral-stability 
boundary. The dotted curve Q 3 d  bounds the region where some three-dimensional disturbances have 
larger growth rates than two-dimensional disturbances. The dashed curve NS(3d) is the modification 
to the neutral-stability boundary when three-dimensional disturbances are taken into account. The 
step-function viscosity model is used with the step at 0 = 1/2. 
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FIGURE 8. Contours of growth rate, o, in (Q,k')-space are shown for = 20 < f l 3 d  in (a) and for 
p = 30 > & in (b). The zero contour separates the unstable and stable regions. 

As Q tends to zero the value of kGaX tends to a finite value. In this limit the majority 
of the cooling occurs near the entrance of the channel while the remainder of the 
channel contains cold isoviscous fluid at temperature T < 0. Hence, as expected, 
for slow flow rates the wavenumber of the most unstable or least stable mode is 
determined by the lengthscale over which the cooling occurs rather than the whole 
length of the channel. 

Some physical understanding of these results can be provided by comparison with 
the Saffman-Taylor (1958) instability, in which the interface separating two fluids of 
different viscosities is unstable if the fluid of lower viscosity flows toward the fluid 
of higher viscosity. Returning to the present problem, when the flow is sufficiently 
slow the fluid will lose most of its heat by the time it reaches the exit and so 
have a viscosity close to p(TC).  This gives rise to strong viscosity gradients in the 
along-channel direction, and so fluid of low viscosity is flowing into fluid of high 
viscosity. Thus, by analogy with the Saffman-Taylor instability, we might expect 
three-dimensional effects to emerge. However, when the flow is sufficiently rapid 
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the regions of high viscosity are found only in thin boundary layers adjacent to the 
walls and so viscosity gradients in the along-channel direction should in general be 
small, thus giving no reason to expect three-dimensional effects to emerge. These 
considerations provide us with some physical explanation of why the slow flow regimes 
are affected by three-dimensional modes whereas the fast flow regimes are not. 

Although there are obvious similarities between the present problem and the 
Saffman-Taylor problem there are also significant differences. Firstly, for the case 
of continuous viscosity variation the current problem has no interface, though there 
is still a transition from low to high viscosity. Secondly, and more importantly, the 
variation in viscosity is not fixed to fluid elements and simply advected, since the 
viscosity of each element also evolves owing to the diffusion of heat. As a result, 
the stability domain and dispersion relationship differ from those associated with the 
S affman-Taylor instability. 

5. Three-dimensional steady flows 
In this section we prove a surprising result which greatly simplifies the three- 

dimensional steady-state equations by establishing a strong correspondence between 
three-dimensional and two-dimensional steady states. The result holds irrespective of 
the particular gcometry of the boundaries in the (x,z)-plane. 

We begin by using the lubrication equation ( 2 . 5 ~ )  along with the boundary condi- 
tions u = 0 on y = 1 and uy = 0 on y = 0, to write u in the form 

u = -%(y; T)Vp,  (5.1) 

where % ( y ;  T )  is a function of y and a functional of T defined by 

Substitution of this into the equation of local incompressibility (2.6) along with the 
boundary condition o = 0 on y = 1 yields 

v = -(V2p + V p  * V )  % dy. Ii 
We define the local, cross-channel-averaged volume flux by 

which, by using (5.1), can be expressed in the form 

q = -9( T)Vp,  

where 2 is a functional of T defined by 

Hence the equation of global continuity, 

v - q  =o,  

(V2p + vp - V ) 2  = 0. 

which follows by integration of (2.6) across the channel, can be written as 
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Using (5.5) and (5.8) to eliminate p from (5.3), we obtain 
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L! = q - V (  f l1 4?? dy). 

Thus the steady temperature equation, 

U - V T  +vT, = Ty,,, 

can be expressed in the form 

(5.9) 

(5.10) 

(5.11) 

Since 92 and 2 depend only on the cross-channel temperature profile at a given 
x and z ,  the only explicit dependence on x and z in (5.11) occurs in the operator 
q * V ,  which describes variation along the streamlines of the two-dimensional averaged 
flow field q(x,z) .  We rescale the variation along these streamlines by introducing a 
time-like variable z(x, z )  that satisfies 

Q'Vt  = 1 (5.12) 

subject to z = 0 at the entrance to the channel. Thus (5.11) becomes 

(5.13) 

where d / d z  is the derivative following a fixed streamline of q. The variable z can be 
interpreted physically as an averaged measure of the time taken for fluid to reach a 
given x and z ,  though it should be remembered that the fluid by the walls is stationary 
and that on the centreline is moving faster than q. 

Equation (5.13) takes the same form as the two-dimensional steady-state temper- 
ature equation with unit input flow rate and z replaced by 7. Hence we deduce 
the surprising result that along the streamlines of the average flow field q the cross- 
channel temperature profile maintains the same form as in the two-dimensional steady 
state. The result depends on the fact that, by using global continuity, both u and v can 
be expressed solely in terms of Vp, or 4, and the cross-channel temperature profile. 
In particular, the key step seems to be the elimination of V'p, which is influenced by 
neighbouring streamlines; from (5.3) using (5.8). (We note the generalization that a 
steady temperature field in a channel of non-uniform width 2h(x,z) can be obtained 
from the two-dimensional steady state in a uniform channel by modifying the defini- 
tion of t in (5.12) to q * V z  = h, where q = -h39Vp, and stretching the temperature 
profile at each 7 by a factor h.) 

Having established this correspondence between the temperature distribution in a 
general three-dimensional steady state and that in two-dimensional steady flow with 
q = (O,O, l), we define an average viscosity p ( z )  by 

r 1-1 

(5.14) 

where T ( y ,  z) is the solution of (5.13). Hence the three-dimensional steady-state 
equations can be written as 

v - q = o ,  q - v z  = 1) p(z)q = -vp. (5.15) 
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The boundary conditions are z = 0 at the entrance of the channel together with 
conditions on the pressure which will depend upon the particular geometry in question. 
The advantage of this formulation is that all the cross-channel structure is embodied 
in the known function p ,  thus reducing the problem from three dimensions to the 
two-dimensional (x, z)-plane. 

A number of previous studies (Whitehead & Helfrich 1991; Bercovici 1992, 1994; 
Helfrich 1995) of temperature-dependent lubrication flows have used ad hoe cross- 
channel averages based on parabolic velocity and temperature profiles, which result in 
equations similar to (5.15). When the fluid has travelled a distance much greater than 
the thermal entry length such an averaged approach is clearly valid. However, in the 
region in which interesting dynamical behaviour or instability is predicted by these 
models the distance travelled by the fluid is comparable to the thermal entry length 
and thus the assumption that the flow can be well represented by cross-channel- 
averages appears at first sight to be invalid. However, the above result shows that, 
provided suitable weighted averages are taken and an appropriate average viscosity 
model p is chosen, the approach is certainly a valid way to determine steady states. It 
should be noted, however, that the non-steady behaviour of a cross-channel averaged 
model need not be the same as that of the full model. 

Without detailed calculation of p from the full solution of (5.13) for a given p ( T ) ,  
an appropriate empirical choice for the functional form of p is a non-trivial matter. 
Evidently, the function p(zj must be monotonic with p(0) = 1 and p(c0) = B. As 
shown in Appendix B it is possible to derive conditions on p such that the solution 
to (5.15) exhibits both a non-monotonic relationship between pressure drop and flow 
rate and the property that the slow branch becomes destabilized by the effect of 
three-dimensional disturbances. However, a simple functional form for p may not 
always yield all of the required properties. For example, Whitehead & Helfrich (1991 j 
adopted a form in which the averaged viscosity was unity upstream of one thermal 
entry length and j? downstream of one thermal entry length. This form for ,!i produces 
the non-monotonic flow rate curve, but a simple calculation shows that the slow 
branch is not destabilized in this case and hence three-dimensional disturbances are 
never the most rapidly growing modes. 

6. Three-dimensional flow-focused steady states 
When the slow branch of the curve relating pressure drop and flow rate becomes 

unstable to three-dimensional disturbances a slight increase in the viscosity near 
some value of x will lead to a decrease in the along-channel velocity which will 
decrease the advected heat supply and thus cause the fluid to become more viscous. 
A slight decrease in the viscosity at a neighbouring value of x will have the opposite 
effect. The difference in pressure between these values of x cause transverse flows 
which accentuate this mechanism and lead to even stronger transverse flows. It 
seems plausible that this mechanism will eventually cease and that the growth of the 
disturbance might be saturated by the formation of a three-dimensional steady state. 

Unfortunately, when calculating three-dimensional flows we are unable to make a 
coordinate rescaling analogous to that described in $3 for the solution of the two- 
dimensional equations and so we must employ an alternative technique to obtain 
the solution. Rather than attempt the computationally intensive solution of the time 
evolution of the full three-dimensional equations towards a steady state, we make 
use of the result derived in $5 and work with the cross-channel-averaged model. In 
order to construct an iterative numerical method, we replace the operator q - V in 
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FIGURE 9. Growth rates for both the full system (solid line) and the cross-channel-averaged system 
(dashed line) for = 30. (a )  k' = 0, (b)  k' = 25. The points of neutral stability in the two systems 
coincide. 
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(5.15) by d; + q - V, where 7 is a pseudo-time, corresponding to the iteration parameter. 
Elimination of g then yields 

v .  (g) =o .  

(6.la) 

(6.lb) 

with boundary conditions 

p = O  and z = O  at z=O, (6 .1~)  

p = - n  at z = 1 .  (6.ld) 
We also choose a finite rectangular domain and adopt periodic boundary conditions in 
x, which essentially fixes the wavenumber in the x-direction of any thrce-dimensional 
state. 

The unique correspondence shown in $5 between steady states in the full three- 
dimensional system and in the cross-channel-averaged system suggests that the sta- 
bility boundaries in the two systems will be identical if the bifurcation to instability 
involves a three-dimensional steady state. Hence the stability of steady states in the 
full three-dimensional system should be the same as the pseudo-time stability of the 
cross-channel-averaged system. This is illustrated in figure 9 where the growth rates 
(in real time and pseudo-time) are shown for a given basic state. The stability is 
indeed seen to agree and other calculations found no differences between the stability 
boundaries of the two systems. However, the growth rates are different, with the 
exception of states which have neutral growth rate, thus illustrating the point that 
the unsteady evolution of the systems may be different. 

The pseudo-time evolution of (6.1) is not, in itself, of interest with regard to 
the full system, since our purpose is to iterate to a steady state. Hence we are 
justified in the use of a low-order method for pseudo-time stepping. We adopt a 
finite-difference approach and solve (6 .1~)  by first-order explicit time-stepping, with 
the time-step constrained by a Courant condition, while the spatial derivatives are 
evaluated by an upwinding technique. This gives the new distribution of z. Since 
the pressure distribution changes slowly from one pseudo-time step to the next the 
elliptic problem (6.16) is best solved by an iterative rather than a direct method. 
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FIGURL 10. Schematic of the local bifurcation structure near the point where the slow branch of the 
curve relating pressure drop to flow rate becomes unstable to three-dimensional disturbances. The 
points A, B, C correspond to the intersection of p = const with the curves NS(3d), NS(2d) and Q 3 d  

in figure 7. 

Thus we adopt an Alternating Direction Implicit (ADI) method with second-order 
finite-differences in both the x- and z-directions to find the new value of the pressure 
distribution. We then make the next explicit time step to calculate the distribution of z 
and continue in the obvious way until a steady state is achieved. The spatial accuracy 
of this method was checked by comparison of the results of the two-dimensional 
calculation ($3) with steady solutions of (6.1) in which there is no x variation in the 
solution. 

As discussed above, the stability of unidirectional solutions of the cross-channel- 
averaged model (6.1) is the same as that of the full model (figure 7). The obvious 
place to seek three-dimensional (flow-focused) steady states is near where the slow 
branch becomes unstable to three-dimensional disturbances. However, despite using a 
continuation method based on a slow variation of parameters from a stable solution, 
we were unable to find any three-dimensional steady states beyond the bifurcation 
point. Instead, all unstable solutions continued to evolve with pseudo-time. There 
are indications that unstable flows always evolve in the averaged model onto the fast 
branch, though this has yet to be confirmed. It should also be noted again that the 
pseudo-time evolution of the averaged model may not be analogous to the evolution 
of the full model. However, the non-existence of supercritical steady states near the 
bifurcation on the slow branch in the cross-channel-averaged system does imply the 
non-existence of similar supercritical steady states in the full system. The calculation 
in $4 shows that the slow branch becomes unstable to three-dimensional disturbances 
via a stationary bifurcation and so we conclude that there must be a subcritical 
pitchfork bifurcation at this point (figure 10) (e.g. Guckenheimer & Holmes 1983, 
section 3.4). 

7. Discussion 
We have analysed planar channel flow in which large viscosity changes occur 

owing to cooling from the sidewalls. A variety of phenomena has been demonstrated, 
including a nonlinear and possibly non-monotonic relationship between the pressure 
drop and the flow rate and linear instability to two-dimensional or three-dimensional 
disturbances. 

For sufficiently large viscosity contrasts and certain values of the fixed pressure 
drop there are three possible two-dimensional steady statcs corresponding to different 
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flow rates. In real geological situations the pressure in the magma chamber which 
drives the flow will decrease with time. If this decrease occurs sufficiently slowly then 
the present analysis will give the relationship between the pressure drop at a given 
time and the flow rate at that time. Suppose that the variation in viscosity of the 
magma is sufficiently large to allow triple solutions and the initial pressure in the 
chamber is sufficiently large that the initial flow is on the fast branch. Then, as the 
pressure in the chamber gradually decreases, the flow rate will also gradually decrease 
until the pressure drop falls below Ihe point where the fast branch ends. At this point 
the flow rate will undergo a hysteretic jump taking it onto the slow branch. It follows 
that a rapid decrease in the eruption rate may correspond to a change of solution 
branch rather than to a sudden decrease in the magma chamber pressure. 

When three two-dimensional steady states exist it has been shown that the central 
branch is always unstable, as one might expect from physical arguments, with the fast 
and slow branches always stable to two-dimensional disturbances. It has also been 
shown that, when three-dimensional disturbances are considered, part of the slow 
branch can become unstable. The mechanism which makes the modes associated with 
three-dimensional disturbances more unstable or less stable than the modes associated 
with two-dimensional disturbances can be understood physically by analogy with 
the Saffman-Taylor (1958) instability. There are however a number of important 
differences. In the Saffman-Taylor instability the interface between the regions of 
different viscosity is fixed to fluid elements, whereas in the current problem the 
location of the viscosity variation is determined by the temperature in the fluid. Also 
the effect of three-dimensional disturbances on the growth rate is superimposed onto 
a steady state which has, in general, a non-zero growth rate for two-dimensional 
disturbances. 

Bruce & Huppert (1990) argued that three-dimensional instabilities would arise 
even for large flow rates when the temperature variation is confined to thin boundary 
layers adjacent to the wall. We find that this is not the case and that states on the fast 
branch are always stable to three-dimensional disturbances. However, the analysis 
does show that their physical arguments suggesting three-dimensionality of solutions 
are valid for lower flow rates. There are however important differences between the 
flow analysed in the current work and that analysed by Bruce & Huppert. Their 
solution is implicitly time dependent which precludes a formal stability analysis. 
Another difference is that in both problems the flow resistance depends on the 
temperature of the fluid, but the dependency in Bruce & Huppert’s analysis was due 
to an increase or decrease in the width of the channel by melting or solidification 
rather than to variation in viscosity. 

Motivated by the fact that the two-dimensional steady states are unstable under 
certain conditions, we used the result obtained in $5 to facilitate the search for 
three-dimensional steady states. The result showed that, by taking appropriate cross- 
channel averages the three-dimensional steady-state equations are equivalent to a 
two-dimensional system together with a suitably averaged viscosity function, which 
must be calculated by integrating the full system with unit input flow rate. This result 
provides some support for the averaged systems which have been used in a number of 
previous studies (Whitehead & Helfrich 1991 ; Bercovici 1992, 1994; Helfrich 19951, 
though it should be noted both that the true unsteady behaviour may not be imitated 
by the averaged system and that care is necessary to choose a suitable averaged 
viscosity. 

An interesting extension of this work would be an exploration of the bifurcation 
structure of the whole parameter space. Also, an experiment could confirm the 
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findings of the analysis. This could be most conveniently carried out using a fluid 
that exhibits large viscosity contrasts around room temperature such as glycerol, 
which increases in viscosity by a factor of about 1000 between 0°C and 100°C and 
shows even steeper increases when cooled below 0°C. We close by noting that thermo- 
viscous coupling is an interesting general area with a number of problems still to be 
anal y sed. 

Appendix A. The basic flow for a step-function viscosity model 
In 53 we derived the equations governing the mass and heat transport for a 

continuous dependence of viscosity on temperature. In this Appendix we summarize 
the solutions for the velocity profile when the step-function model (2.9b) is used. 

The viscosity is piecewise constant and so the along-channel component of velocity 
is composed of parabolic segments. The segments depend on the position of the 
isotherm T = 8, which we denote Y (z), and are given by 

where the pressure gradient is given by 

and the cross-channel components of velocity are given by integration of (2.6). 
The near-entrance similarity solution also takes a slightly different form to the case 

of continuous viscosity variation (3.5) and can be solved explicitly. We introduce 
similarity variables 

and, after substitution into (2.4), (2 .7~)  and (2.7~) and retention of only the leading- 
order terms in z ,  we obtain 

subject to boundary conditions 

This system can readily be solved to yield the condition 

I" exp [-{(/3 - l ) ( q  - c ) ~  + q3}/9/3] dq = 1' exp [-q3/9P] dq, (A4) 

which must be solved numerically for c. 
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Appendix €3. The neutral stability curve for the averaged model (5.17) 
In $4 we showed that the region of instability to two-dimensional disturbances for 

the full model (2.4)-(2.7) corresponds to the region between the turning points on the 
curve of pressure drop versus flow rate when ,!? > pc. For p r  < p < P3d the inclusion 
of three-dimensional disturbances does not extend the region of instability, but for 
P > P 3 d  the region of instability is extended to include slow flows that are stable 
to two-dimensional disturbances. In this Appendix we derive conditions for similar 
results to hold in the averaged model (5.15) 
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As in $3 we rescale the coordinates so that 

q = (0,0,1) on z = O  and p=-4n2 /9Q2  on z =2/3Q. 

The basic steady solution of (5.15) is then 

4 = (0,0,1), z = 2, P = -9F1, ( B W , c )  

where 

We seek neutrally stable linear eigenmodes and let 

T = z + eZ’(z)eikx, p = -9~1 + ep’(z)elkx. (B2b,c) 

p ( z ) ~ ’  + jiz(z)z’ = p i ,  p ( z ) d  = ikp’, (B3a,b) 

Substitution of (B2) into (5.15) followed by linearization yields 

W‘ + Z: = Oikd +a: = 0, 

~ ’ (0 )  = p’(0) = p’(2/3Q) = 0. 

(B3c,d) 

(B3e) 

which must be solved subject to the boundary conditions 

For a given value of k, we integrate (B3) to find the zeros of p’(z) and thus obtain 
the values of Q which are neutrally stable for that wavenumber. 

When k = 0 integration of (B3) yields 

4’ = (O,O, 1) 7‘ = z p’ = 29-[p] - zp .  (B4a,b,c) 

Thus the condition for neutrally stable two-dimensional modes, and hence for turning 
points on the curve of pressure drop versus flow rate, is that p gives p’ = 0 in (B4c) 
for some z = 2/3Q. If ji is monotonic then the first zero ( zmm)  will correspond to a 
local minimum on the pressure drop versus flow rate curve and the second zero (zmaX) 
will correspond to a local maximum. 

We now consider how the introduction of three-dimensional disturbances affects 
the neutral-stability boundary. We expand the linear eigenmode for k 4  1 by 

u’ = ku’,, a’ = 1 + k2W’, (BSa,b) 
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where ~b and pb are given by (B4). Integration of the O(k2)  terms in (B5j yields 

I f  we evaluate p i  at the zero of (A5j that corresponds to the local maximum in 
the pressure drop versus flow rate curve we can infer whether the effect of small 
wavenumber is stabilizing or destabilizing. If p i  > 0 then the effect of small k is to 
move the neutral mode into the region which is unstable to k = 0 and so in this case 
small k is stabilizing. However, i f  p{ < 0 then the opposite is true and therefore the 
condition for destabilization of the slow branch is 

P h l a x )  < 0, (B7) 

where p i  and p i  are related to p by (B4r.j and (B6). 
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